Technological Challenges in the Production of Whole Grain Products

Jon M. Faubion Department of Grain Science Kansas State University

- Context
 - Can they be produced?

- Context
 - Can they be produced?OF COURSE THEY CAN BE!
 - Originally all baked products were W.G
 - Companies have been & are producing high quality W.G. baked products

- Reality
 - Creation/Production requires
 - ADAPTATIONS
 - MODIFICATIONS
 - TRANSFORMATIONS
 - Formulations & Processes

- Process & Formulation Adaptations
 - <u>Refined Flour</u> Formulations
 - Optimized to a different base ingredient
 - Different intermediate product (dough)
 - Refined Flour
 - Endosperm
 - Starch & protein

- Process & Formulation Adaptations
 - <u>Whole Grain</u> Formulations (@best)
 - Different optimization basis
 - Includes the bits removed in refined flour milling
 - Bran
 - Germ
 - @ most challenging
 - Adds non-wheat grains
 - Large pieces of the caryopsis

• Effects?

- Dilution and Addition
- Dilutes GLUTEN Protein
 - Responsible for dough & crumb structure
- Bran & to a lesser extent, germ
 - Interferes with its creation
 - Disrupts it

- Effects?
 - Dilution and Addition
 - ADDS
 - Large carbohydrate polymers (Pentosans)
 - Arabinoxylans
 - Beta Glucans
 - Quite hydrophyllic
 - Compete for formula water
 - When hydrated large effects on DOUGH properties

• Effects?

- Dilution and Addition
 - Net result:
 - A different system
 - » Physical properties
 - » Processing requirements
 - » Final product properties

- Effects & Adaptations
 - Model: Bread
 - Process: Straight Dough
 - By Process Step

- Straight Dough Process
 - Scale
 - Mix
 - Ferment/punch
 - Divide/Round
 - Make-up (incl sheeting)
 - Pan
 - Proof
 - Bake

SCALING

- Additional major ingredient(s)
- Additional minor ingredient(s)
- Additional or different micro ingredient blends

MIXING

- Obligate first step
- Creates the gluten matrix
- Mixing optima do exist
 - Water content
 - Work input (time)
 - Little Red Riding Hood's situation

MIXING: WG Challenges

- Bran & etc are hydrophilic
 - Hydrate @ diverse rates
 - Competes with protein for water
- Formula water must go up
- If no adjustment
 - "ok" @ mixer
 - Underabsorbed (bucky) @ divider/rounder
 - Processing problems

- ADJUSTMENTS & Consequences
 - Increased absorption (up to 20%)
 - Must be removed @ baking: time & temp. changes
 - Slack out of the mixer
 - But better later in the process
 - <u>Reduced</u> mixing requirements
 - f(water content, gluten)
 - Mixing optimum: narrow & cryptic
 - Easy to under or overmix

- W.G. dough (w. no other adjustments)
 WEAK
 - More viscous
 - Less elastic
 - Sticky
 - WHY?
 - Less gluten to create the matrix (structure)
 - More "stuff"
 - Interferes with gluten creation & continuity

- W.G. dough (w. no other adjustments)
 - Does the bran '*cut*' the gluten strands?
 - Probably NOT the major mechanism
 - Does cause it to fail
 - More stuff to stretch over

- WEAK DOUGHS
 - Machine Poorly
 - Dividing/rounding
 - Sheeting
 - Retain Leavening Gas Poorly
 - Lack Processing Tolerance

WEAK DOUGHS

- Morel likely
 - Lower volume
 - Poor loaf shape
 - Cripples

What to be done?

ADAPTATIONS

- Supplement the protein

- Vital wheat gluten
- 8% to 15% or > possible
- Issues
 - Cost
 - Mixing requirements

ADAPTATIONS, ctd

– STRENGTHEN the Protein Matrix

- Oxidizing Improvers
- Used in non-W.G. applications
- Different Chemistries
- Increase cross-links between gluten polymers
 - Cys-Cys linkages (disulfides)
 - More elastic behavior
 - Vulcanized rubber

- Oxidizing Improvers
 - Ascorbic Acid
 - Dosage limit: none
 - Usage: 0- ~200 ppm
 - Rate: medium to fast
 - Rxn timing: proof thru early oven spring

- Oxidizing Improvers
 - Azodicarbonamide (ADA)
 - Dosage limit: 45 ppm
 - Rate: Fast & extended
 - Rxn timing: mix thru proof
 - Potassium Bromate
 - Dosage limit: 75 ppm
 - Rate: Slow (heat triggered)
 - Rxn timing: oven (early bake)
 - Note food safety concerns!

- Formula Adaptations, ctd.
 - Increase Abuse Tolerance
 - Dough Strengtheners (emulsifiers)
 - Sodium Stearoyl Lactylate (SSL)
 - <u>Legal</u> limit: 0.5% (FWB)
 - Gas cell stabilization
 - Proof Collapse & the 'drop' test
 - Additional Benefits

- Low Volume Adaptations
 - FORMULA
 - Emulsifiers (SSL)
 - Add'l Yeast (1-3%
 - Alpha Amylase*
 - PROCESS
 - Extend Proof time
 - Risk of over proofing & collapse
 - Higher dough:pan ratio
 - Both require line & equipment modifications

- Dough Handling Adaptations
 - Problems
 - Weak
 - Gluten dilution
 - Sticky
 - Non-starch Polysaccharides
 - Some cereals more so than others
 - Poor Tolerance
 - Dividing/rounding
 - Sheeting
 - Make-up

- Dough Handling Adaptations
 - Slow down
 - Divider, etc
 - Requires upstream & downstream compensation

- Baking: WG products at the oven
 - Higher Dough Moisture
 - Hydrophilic 'stuff'
 - Denser Doughs
- Adaptations
 - Longer bake times
 - Oven profiles to prevent burning but achieve final moisture requirements

- Baking: WG products at the oven
 - Higher Dough Moisture
 - Hydrophilic 'stuff'
 - Denser Doughs
- Adaptations
 - Longer bake times
 - Oven profiles to prevent burning but achieve final moisture requirements