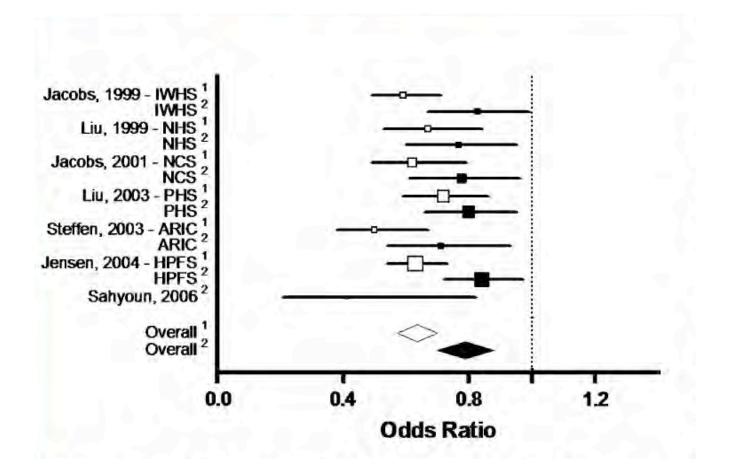
Whole Grains and Health: A Roundup of the Latest Research

Penny M. Kris-Etherton, PhD, RD Distinguished Professor of Nutrition Department of Nutritional Sciences Pennsylvania State University

Outline


- Whole grain benefits
 - CVD
 - Weight Management
 - Diabetes & Metabolic Syndrome
 - Cancer
- Benefits go beyond fiber
 - Bran, endosperm, germ
 - Antioxidants, polyphenols, phytosterols

Whole Grain Foods

- Whole wheat and whole wheat flour
- Whole oats and whole oat flour
- Whole cornmeal and whole corn flour
- Brown rice and brown rice flour
- Whole rye and whole rye flour
- Whole barley
- Bulgur
- Buckwheat
- Popcorn
- Amaranth
- Psyllium

Inverse Association Between Whole Grain Intake and Cardiovascular Disease

¹Demographic adjusted model

²Demographic plus risk factor adjusted model

Mellon et al., Nutr Metab & Cardiovasc Dis. 18: 283-290, 2008

Summary of Large-Scale Observational Studies Showing a Benefit of Increased Whole Grain Consumption on CVD Risk*

Study Data Source	Reported Association/Outcome	Reference
Health Professionals Follow-Up (42,850 adult men), 14 years of follow- up	18% reduction in coronary heart disease	(Jensen et al 2004)
Nurse's Health Study (75,521 adult women), up to 12 years follow-up	36% reduction in ischemic stroke	(Liu et al 2000)
Iowa Women's Health Study (38,470 postmenopausal women), 9 years of follow-up	18% reduction in all cardiovasculardisease deaths18% reduction in coronary heart disease	(Jacobs et al 1999)
Iowa Women's Health Study (34,491 postmenopausal women), 9 years of follow-up	30% reduction in ischemic heart disease death	(Jacobs et al 1998)
U.S., Boston adult 535 men and women	52% reduction in CVD mortality	(Sahyoun et al 2006)
Atherosclerosis Risk in Communities (ARIC) Study (15,972 adult men and women), 11 year follow-up	23% reduction in all-cause mortality28% reduction in incident coronary artery	(Steffen et al 2003)
*Only cignificant differences are reported unless		

*Only significant differences are reported unless otherwise stated (P < 0.05).

Whole Grains & <u>Stroke</u>: Epidemiological Evidence

Harvard Nurses' Health Study (75,000 women)

3 servings of whole grain food/day **36%** ↓ risk of ischemic stroke (24% after controlling for fiber)

Liu et al., JAMA . 2000;284:1534-1540.

Whole Grain Intake and Incident of Hypertension In Men: Health Professionals Follow-Up Study, 1986-2004

	1	2	3	4	5	P for trend
Median intake (g/d)	3.3	9.8	17.1	26.9	46.0	—
No. of cases	1826	1917	1922	1914	1648	—
Person-years	61,137	68,966	72,196	73,184	69,877	-
Age- and energy- adjusted RR	1.00	0.90	0.83	0.81	0.72	<0.0001
Multivariate- adjusted RR	1.00	0.94	0.89	0.89	0.81	<0.0001

Flint et al., Am J Clin Nutr. 2009;90:493-498.

Whole Grains & <u>Heart Disease</u>: Effect on Blood Lipids

Whole grains lower cholesterol levels in part because of a high level of viscous (soluble) fiber

- Oats added to diet DeGroot et al., 1963
 - + cholesterol 5-8%
- Whole grain cereal & AHA Step One diet Johnston et al., 1998
 - 🕹 cholesterol 4%
- FDA Health Claim 3 grams of viscous (soluble) fiber from whole grain oats or oat bran
 - **Cholesterol 5-6mg/dL** Ripsin et al., 1992
- Whole wheat vs refined wheat Giacco et al., 2009
 - V cholesterol 4%

Whole Grains & CVD Risk Reduction: Potential Mechanisms

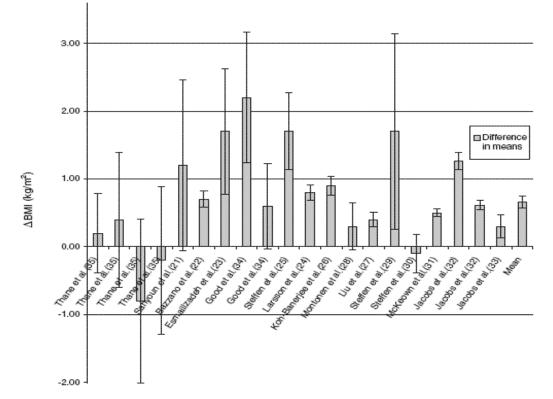
- Soluble Fiber
- LDL Oxidation
- Vascular Reactivity
- Coagulation and Fibrinolysis
- Insulin Sensitivity
- Homocysteine

Whole Grains & Obesity: Epidemiological Studies

NHANES 1999-2000

Whole Grain (WG) Intake (sv/d) Inversely Associated with BMI and Waist Circumference in Adult Women

	WG = 0 sv/d	O < WG <1 sv/d	WG ≥1 sv/d
BMI	29.0 ± 0.3	28.2 ± 0.4	27.1 ± 0.5 ^a
Waist Circumference	93.9 ± 0.9	91.8 ± 1.1	90.3 ± 1.3 ^a


^a Means with superscripts are significantly different from 0 WG servings/day, p<0.05

Good et al., JACN. 2008;27:80-87.

Whole Grains & Obesity: Epidemiological Studies

Higher Whole Grain (WG) Intake (3 servings/day) is associated with Lower BMI

Fig. 2 Mean difference in body mass index (Δ BMI) in non- or low consumers of whole grains compared with high consumers of whole grains (95 % confidence interval shown by vertical bars)

Harland & Garton, Publ Health Nutr. 2008;11:554-563.

Whole Grains and Waist Circumference: Epidemiological Studies

Higher Whole Grain (WG) Intake (3 servings/day) is associated with Lower Central Adiposity

Study name	Subgroup within study		atistics f	or cau	istudy			Differen	ce in means and	95% 01	
		Difference in means	Standard error	Lower limit	Upper limit	<i>P</i> value					
Esmaillzadeh et al.(23) WHR	0.050	0.008	0.034	0.066	0.000	<111		-		1.1
Jacobs et al.(33)	WHR	0.016	0.001	0.013	0.019	0.000					
McKeown et al.(31)	WHR	0.030	0.006	0.018	0.042	0.000					
Steffen et al. (30)	WHR	0.016	0.001	0.013	0.019	0.000					
Mean random-effec	ts model	0.023	0.003	0.016	0.030	0.000			•		
Esmaillzadeh et al.(23) WC	0.050	0.001	0.048	0.052	0.000					
McKeown et al.(31)	WC	0.020	0.008	0.005	0.035	0.009			- -		
Steffen et al.(29)	WC	0.046	0.017	0.013	0.079	0.006				÷	
Steffen et al.(25)	WC	0.050	0.006	0.039	0.061	0.000					
Thane <i>et al.</i> (35) M	WC	0.010	0.001	0.008	0.012	0.000					
Thane <i>et al.</i> (35) F	WC	-0.010	0.001	-0.012	-0.008	0.000					- AL
Mean random-effec	ts model	0.027	0.013	0.002	0.052	0.033	ч.	_ (I_) •	•		•
							-0.25	-0.13	0.00	0-13	0.25
								Favours control	Fa	wours whole gra	ain

Mean difference (and 95% confidence interval, CI) in waist:hip ratio (WHR) or waist circumference (WC) when low or no whole-grain intake is compared with high intake

Means and percentages of body mass index and insulin, by category of whole grain intake, MESA 2000–2002

Whole Grain Intake Category						
	1	2	3	4	5	P trend
Median whole grain intake	0.02	0.15	0.39	0.72	1.39	
Ν	1069	1137	1072	1121	1097	
BMI	28.2	28.2	27.9	27.8	27.6	<0.0001
Insulin	5.37	5.42	5.42	5.19	5.16	<0.002

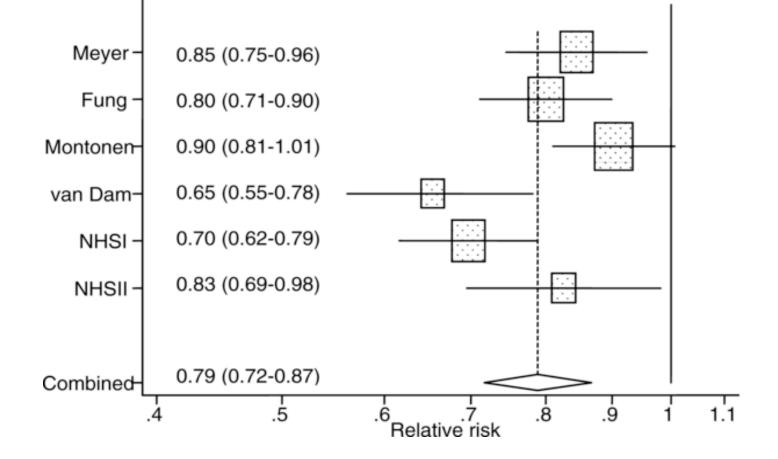
Whole Grains & Obesity: Potential Mechanisms

- High volume, high fiber, low energy density
- Prolonged gastric emptying
- Increased insulin sensitivity
- Secretion of gut hormones

Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults

The study population was composed of 179 (33%) men and 356 (67%) women with an average age of 72.1 y for men and 73.4 y for women

Variables	Q1	Q2	Q3	Q4	<i>P</i> for trend ¹
Whole grain					
n	135	132	135	133	
Median whole grain intake (servings/d) ²	0.31	0.86	1.49	2.90	0.001
BMI (kg/m ²)	26.4	25.5	25.3	25.2	0.03
Glucose (mg/dL)	114.9	113.1	111.5	108.5	0.01
Metabolic syndrome (Odds ratios)	1.00	0.58	0.41	0.46	0.005


Sahyoun, et al., Am J Clin Nutr. 2006;83:124-131.

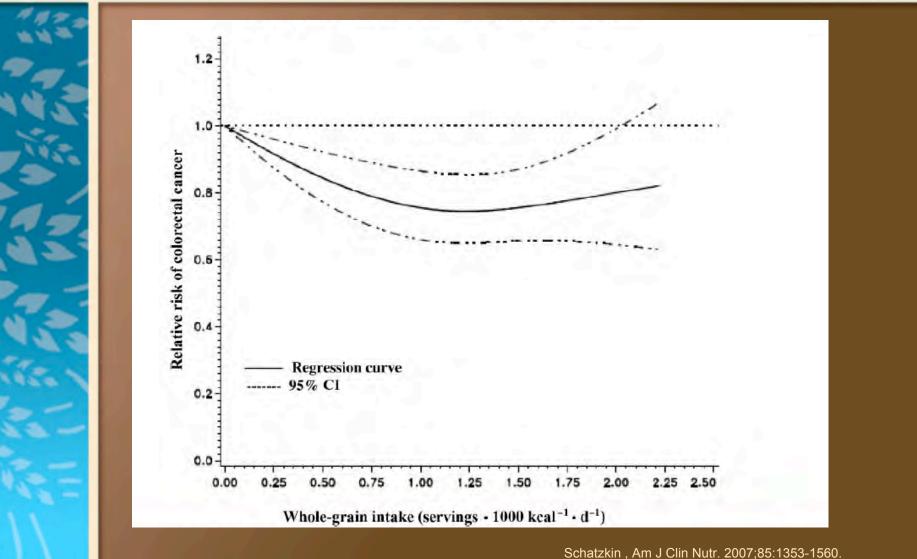
Whole Grains & Type 2 Diabetes: Epidemiological Studies

de Munter et al., PLOS Medicine. 2007;4;e261:1385-1395.

Whole Grains & Type 2 Diabetes: Potential Mechanisms

- Activity of components including fiber, magnesium, vitamin E, phytic acids, phenolic compounds
- Short-chain fatty acids
- Viscous fibers
- Antioxidant activity

Whole Grain Consumption Inversely Associated with Colorectal Cancer Risk*


<u>Study</u>	<u>Relative Risk (95% CI)</u>
Fuchs et al., 1999	1.23 (0.70-1.76)
Pietinen et al., 1999	1.00 (0.64-1.36)
Terry et al., 2001 (Prudent Diet)	0.79 (0.43-1.15)
Terry et al., 2001	0.91 (0.63-1.19)
Bingham et al. 2003	0.78 (0.55-1.01)
Fung et al., 2003 (Prudent Diet)	0.71 (0.35-1.07)
Fung et al., 2003	1.46 (1.05-1.87)
Mai et al., 2003	1.02 (0.73-1.31)
McCullough et al., 2003	1.17 (0.70-1.64)
Bingham et al., 2005	0.93 (0.72-1.14)
Larsson et al., 2005	0.80 (0.51-1.09)
Total	0.94 (0.85-1.03)

Haas et al., Int J Food Sci & Nutr. Epub ahead of print.

*11 cohort studies; 1,719,590 participants (25 to 70 years of age)

Association between whole-grain intake and risk of colorectal cancer

Observational Studies Showing a Benefit of Increased Whole Grain Consumption on Cancer Risk*

Study Data Source	Reported Association/Outcome	Reference
National Institutes of Health and AARP Diet and Health Study (291,988 men and 197,623 women) 5 year follow-up (U.S. population)	 14% reduction in colon cancer risk 15% reduction in distal colon cancer risk 36% reduction in rectal cancer risk Trend for reduction in proximal; colon cancer risk 	(Schatzkin et al 2007)
National Institutes of Health and AARP Diet and Health Study (293,703 men and 198,618 women) 5 year follow-up (U.S. population)	41% reduction in small intestinal cancer risk	(Schatzkin et al 2008)
Population-based case-cohort study 532 incident cases 1,701 controls (U.S. population)	40% reduction in pancreatic cancer risk	(Chan et al 2007)
Swedish Mamography Cohort (61,433 women over 40 yrs) 14.6 year follow-up (Swedish population)	33% reduction in colon cancer risk	(Larsson et al 2005)
*Only significant differences are reported adjusted models.	unless otherwise stated (<i>P</i> < 0.05) for fully	

Seal & Brownlee, Cereal Chem. 2010;87:167-174.

Relative Risks of Small Intestinal Cancer by Quintiles of Dietary Fiber and Whole Grain Intakes

		Quintile of intake						
	1	2	3	4	5			
Whole grain (svgs/1,000 kcal)	<0.3	0.3-<0.5	0.5-<0.7	0.7-<1.0	≥1.0			
Cases/ person years	39/670,289	34/675,902	41/677,448	29/677,897	22/678,431			
Relative Risk	1.0	0.86	1.03	0.73	0.59	p<0.06		
Fiber from grains (g/day)	<3.7	3.7-<5	5-<6.4	6.4-<8.4	≥8.4			
Cases/ person years	34/675,077	41/677,599	32/676,861	37/675,221	21/675,209			
Relative Risk	1.0	1.10	0.81	0.91	0.51	p<0.01		

Schatzkin et al., Gastroenterology. 2008 ;135:1163-1167.

Whole Grains & <u>Cancer</u>: Potential Mechanisms

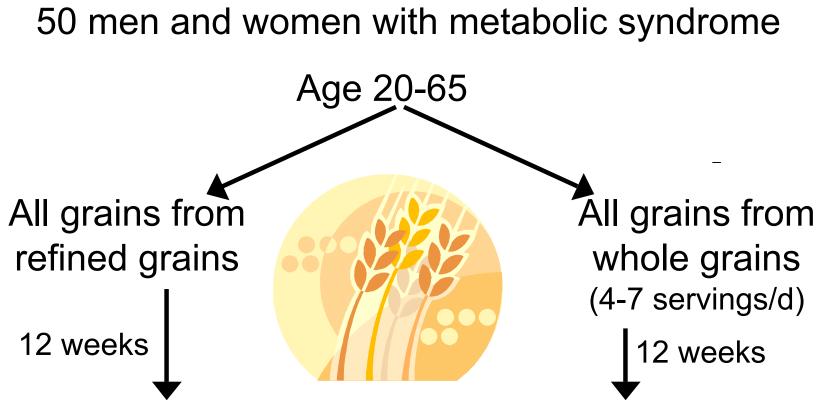
Gastrointestinal

- Carbohydrate fermentation
- Decreased transit time and increased fecal bulk
- Antioxidant activity
- Glucose/insulin response

Whole Grains & <u>Total Mortality</u>: Epidemiological Studies

Harvard Male Health Professionals (86,000)

1 or more serving/day of whole grain cereal (compared to none)


Iowa Women's Health Study (34,333)

3 or more servings/day of whole grain foods

Liu et al., Am J Clin Nutr. 2003;77:594-599; Jacobs et al., Am J Public Health. 1999;89:322-329.

Whole Grain Intake and Weight Loss: Study Design

Assess weight loss and cardiovascular risk factors

Katcher et al., Am J Clin Nutr. 2008;87:79-90.

Inclusion Criteria

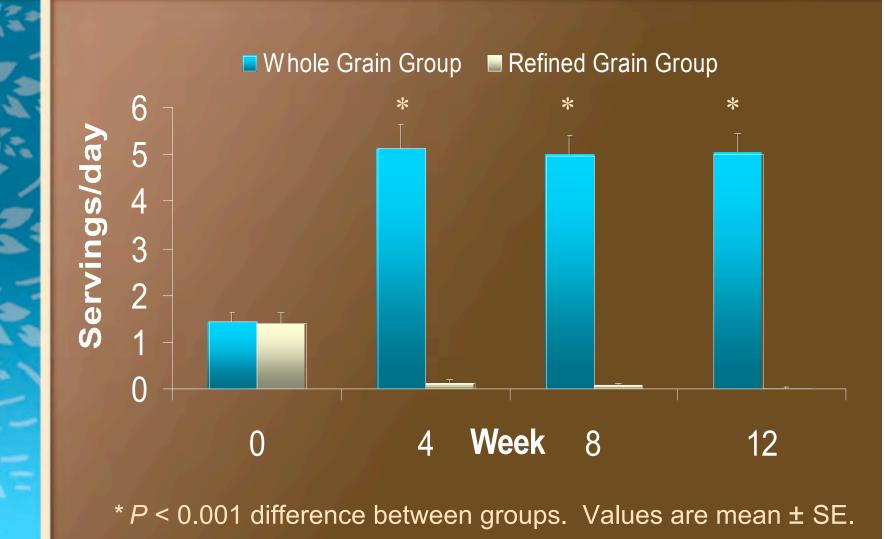
- 2. Have at least 3 ATP III criteria for metabolic syndrome:
 - Abdominal obesity (elevated waist circumference)
 - − Men ≥ 102 cm; Women ≥ 88 cm
 - Raised triglycerides (≥ 150 mg/dL)
 - Reduced HDL cholesterol
 - Men < 40 mg/dL; Women < 50 mg/dL</p>
 - Raised blood pressure (\geq 130/ or \geq 85 mmHg)
 - Elevated plasma glucose (≥ 100 mg/dL)

3. Not taking any medications known to affect glucose tolerance, lipids, or reproductive hormones

Endpoints

- Weight loss * Primary Endpoint
- Lipids and Lipoproteins
 - Cholesterol, HDL, LDL, VLDL, triglycerides
- Inflammation
 - C-reactive Protein, IL-1, IL-6, TNF- α
- Waist Circumference & Abdominal Adiposity
- Glucose Tolerance
 - Glucose & insulin response to an OGGT
- Diet Satisfaction

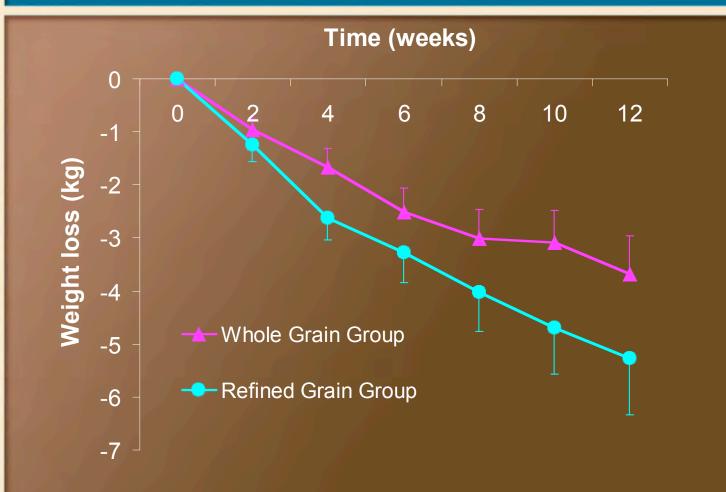
Baseline Characteristics

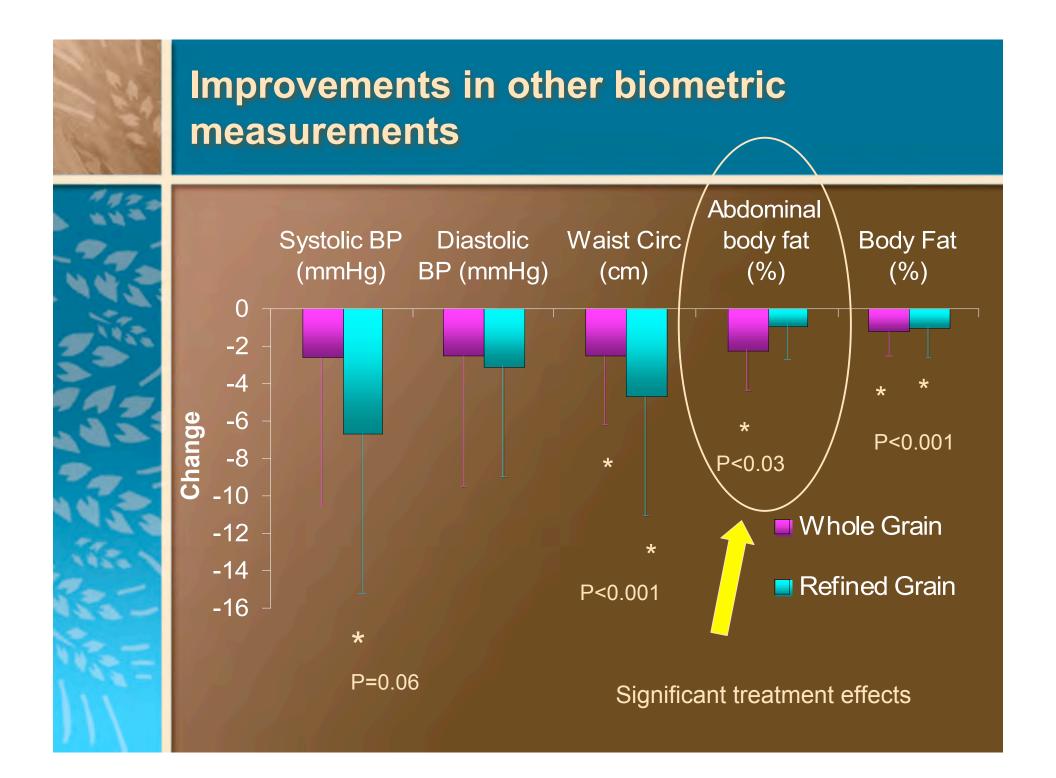


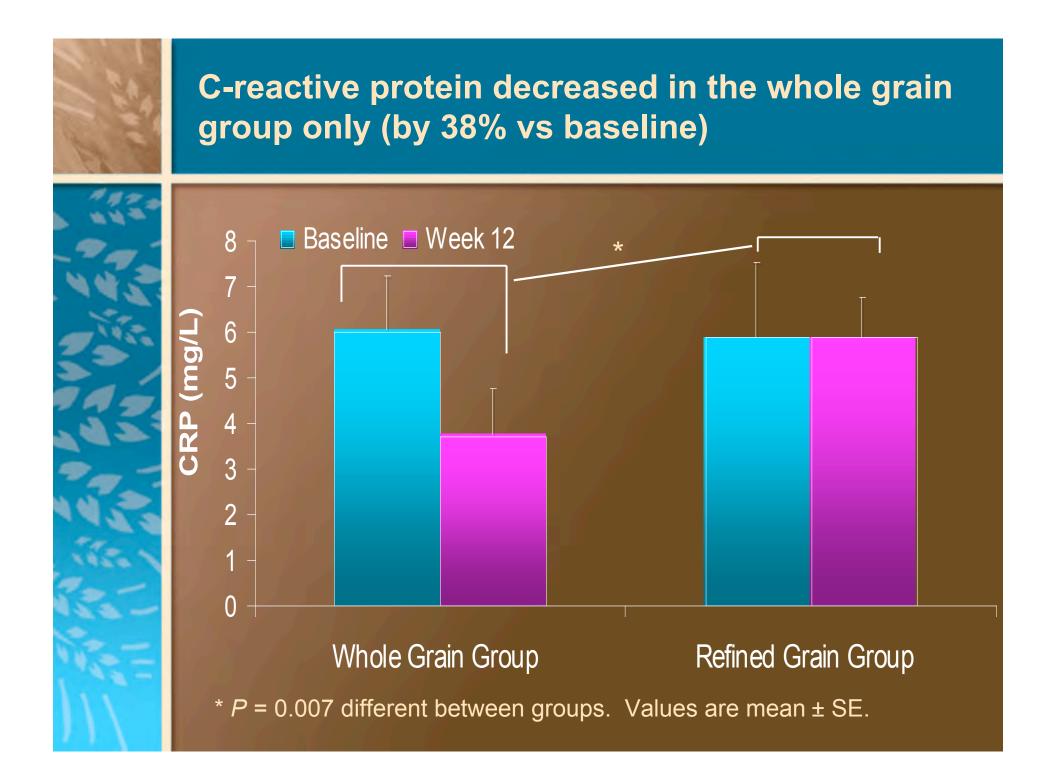
-	<u>Whole Grain</u> 12M, 13F	Refined Grain
Age (y)	45 ± 8	47 ± 10
BMI (kg/m ²⁾	36 ± 4	36 ± 5
Waist Circ (cm)	117 ± 12	118 ± 10
LDL (mg/dL)	119 ± 39	115 ± 20
HDL (mg/dL)	41 ± 9.0	41 ± 8.0
Tgl (mg/dL)	146 ± 63	162 ± 65
Glucose (mg/dL)	96 ± 8	96 ± 6
Insulin (µU /mL)	15 ± 8	14 ± 7
Systolic BP (mmHg)	123 ± 9	130 ± 13 *
Diastolic BP (mmHg)	82 ± 8	83 ± 8

Values are Mean \pm SD. * P < 0.05 difference between groups

Both groups complied with whole grain recommendations


Sources of whole grain foods in the whole grain group


100	Bread and Rolls		
3 -	☐ ■ Ready to Eat Cerea		
	Salty Snacks		
<u>о г</u>	Grains & flours		
2.5 -	Pasta		
	Snack bars		
) -			
2			
1.5 -			
8.1			
1_		Week	



Body weight decreased in both groups

No significant difference between groups in weight loss at any time point

No significant difference between groups in lipids and lipoproteins

* P< 0.05, different from baseline. Values are mean ± SE.

The "Whole" Truth

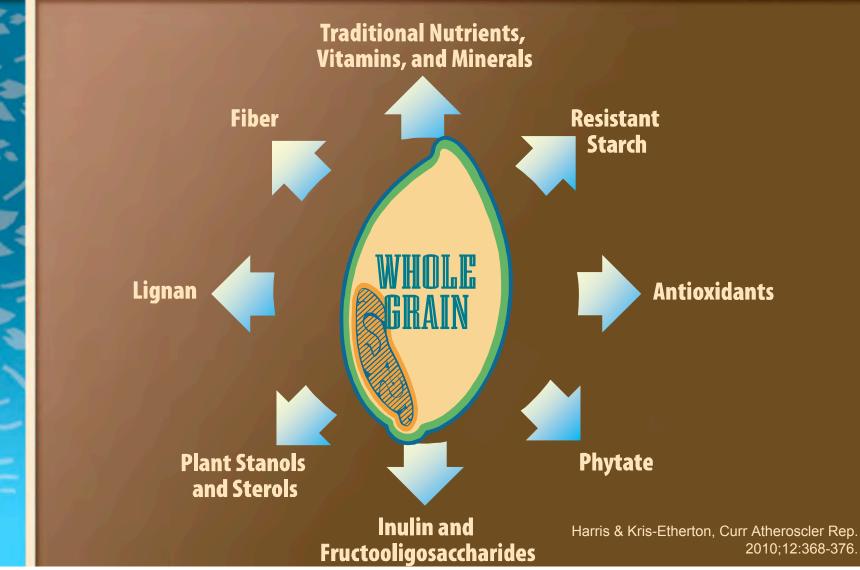
- Consuming whole grains was associated with improved diet quality
- No significant difference in weight loss between a whole grain and refined grain diet
- Greater reduction in C-reactive protein in participants in the whole grain group
- Greater reduction in percentage body fat in the abdominal region in the whole grain group
- No significant differences between groups in change in lipids and lipoproteins or glucose tolerance

Benefits of Whole Grains Go Beyond Fiber

Bran

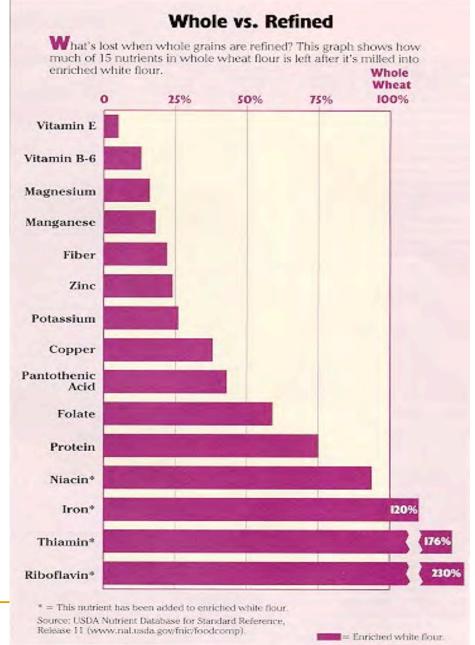
- "Outer shell" protects seed
- Fiber
- B Vitamins
- Trace Minerals
- Phytochemicals

Germ


Nutrient storehouse

- B Vitamins
- Vitamin E
- Trace Minerals
- Phytochemicals
- Antioxidants
- Lipids
- Healthy Fats

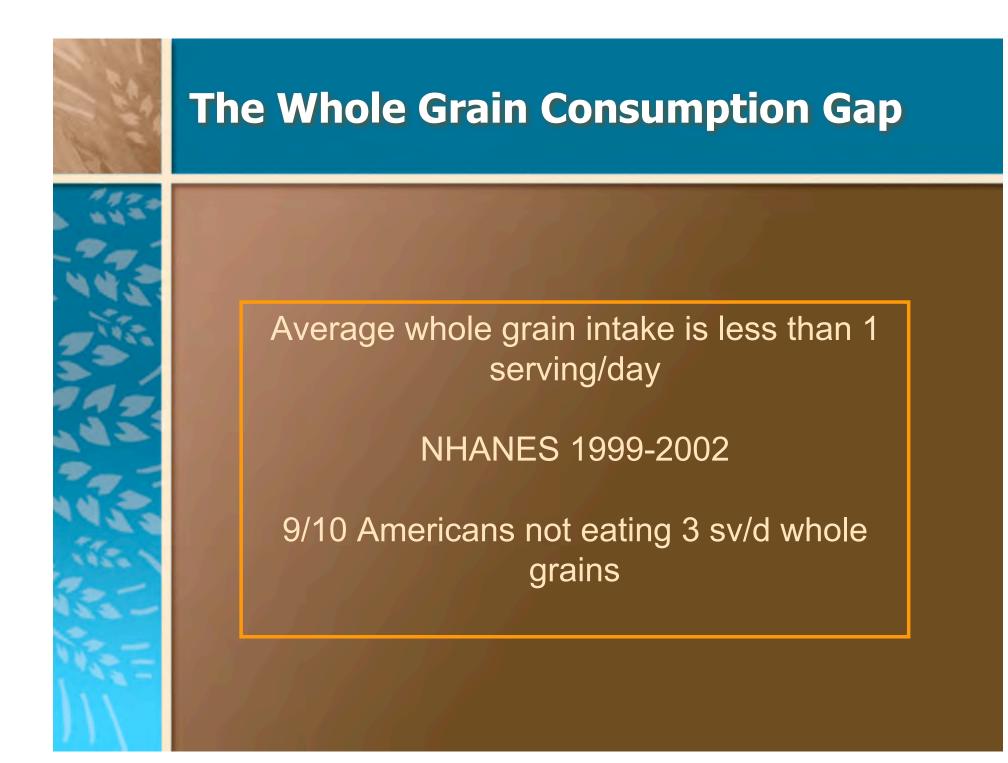
- Aleurone Layer of cells adjacent to endosperm
- Protein
- Enzymes
- Fiber
- Phytochemicals
- **Endosperm** Provides energy
- Carbohydrate
- Protein
- Some B Vitamins



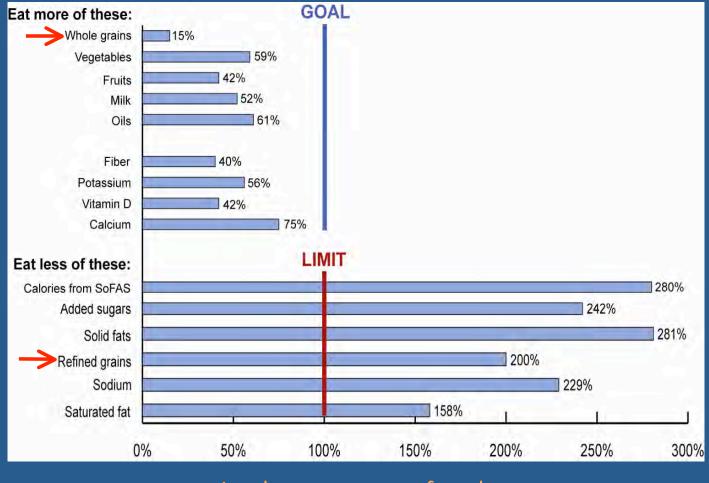
Whole Grains Have Benefits Beyond Fiber

Phytonutrients

- Small but powerful disease fighters found naturally in plant and plant-based foods.
- Whole grains contain significant amounts of the phytonutrients lignan, phytic acid, and phytosterols.
- Aim to get a variety of whole grains in your diet—that way you're more likely to get all of the phytonutrients your body needs!



Whole Grain Recommendations


Recommendations

- The 2005 Dietary Guidelines recommends 3 or more servings of whole grains per day
- DGAC 2010 recommends increasing consumption of fiberrich whole grains
- *Healthy People 2010* objectives aim for 3 servings/day
- American Diabetes Association, 2011 recommends foods containing whole grains (1/2 of grain intake)
- AHA, 2020 Goals Fiber-rich whole grains (1.1 g of fiber per 10 g of carbohydrate): three 1-oz-equivalent servings per day

Dietary Intakes Compared to Recommended Intakes

Intake as percent of goal

Data source: What We Eat in America, National Health and Nutrition Examination Survey (WWEIA, NHANES) 2001-2004 or 2005-2006.

Conclusions

- Scientific evidence supporting the health benefits of whole grains continues to grow
- Scientific support of the health benefits of whole grains is <u>strong</u> and <u>consistent</u>, based on the totality of the evidence
- Health benefits of whole grains are attributed to <u>all parts</u> of the whole grain - bran, germ, and endosperm

Consume Fiber-Rich Whole Grains!

