Understanding Whole Grain Processing and Impacts on Nutrition

November 19, 2020

bell institute

General Mills

Caleigh Sawicki, PhD, MPH Nutrition Epidemiology

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy

University of Massachusetts Amherst

Eric A. Decker, PhD Department of Food Science

Health Benefits of Whole Grains

Caleigh M. Sawicki, PhD, MPH Nutrition Epidemiology

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy

Number of deaths by risk factor, United States, 2017

in Data Source: IHME, Global Burden of Disease (GBD)

Dietary Guidelines for Americans

Usual intake as a percent of goal or limit

DGA 2015

Carbohydrates make up 50% of energy intake

NHANES indicates National Health and Nutrition Examination Survey. Data were adjusted for NHANES survey weights to be nationally representative. Error bars indicate 95% Cls. *P* < .001 for trend for all (decrease for total carbohydrates; increase for total protein and total fat).

Shan et al. 2019, JAMA

Whole Grain Food Sources

• NHANES 15-16

Whole grain kernel is nutrient dense

Image: Brouns et al. (2012); adapted from Surget & Barron (2005)

Whole vs Refined Grain

https://wholegrainscouncil.org/whole-grains-101/whats-whole-grain-refined-grain

Potential Mechanisms

Björck et al. Trends in Food Science & Technology 2012; 25(2): 87-100.

<u>Health Benefits of Whole Grains</u>: Observational Evidence

Independent of other risk factors: physical activity, BMI, smoking, alcohol, energy intake, education

Reynolds et al. 2019 Lancet

Whole grains and CVD

Number of deaths by cause, World, 2017

Whole Grain Intake & Risk of Coronary Heart Disease

Reynolds et al. 2019 Lancet

Whole Grain and CVD Risk Factors

$\Box \quad \underline{Whole \ grains \ and \ blood \ lipids} \rightarrow$

Compared to control diets, those consuming more whole grain had a 2% reduction in total cholesterol and 5% reduction in LDL cholesterol *attributed to whole grain oats

(Hollaender et al. 2015, meta-analysis of 24 randomized controlled trials)

☐ Whole grains and hypertension →

Increased whole grain intake by 30g/d was associated with 8% reduction in risk of hypertension (Schwingshackl et al. 2017, dose-response meta-analysis of 4 prospective studies, n=28,069 cases)

A whole grain diet led to a reduction in diastolic blood pressure by 8% in overweight and obese subjects

(Kirwan et al. 2016, randomized controlled trial)

"In population studies this improvement approximates to a 40% lower risk of dying from stroke and a 30% lower risk of dying from ischemic heart disease or other vascular causes"

Associated clinical risk factors

Associated clinical risk factors

Whole grains and adiposity

Whole Grains and Adiposity

□ <u>Meta-Analysis of 15 Cross-Sectional Studies</u> →

Weighted mean difference in body mass index (BMI) was 0.63 kg/m² less in high-WG consumers compared with low or non-WG consumers (Harland et al. 2005)

■ Prospective Cohorts →

Higher daily whole grain intake is associated with less weight gain (Liu et al. 2003; Koh-Banerjee et al 2004; Mozaffarian et al. 2011; Winkvist et al. 2017)

<u>Meta-Analysis of 26 RCT</u>→

No effect on body weight but a small effect on percent of body fat (Pol et al. 2013)

□ <u>Meta-Analysis of 11 RCT</u>→

Effect on change in body weight (mean difference -0.62 kg) (Reynolds et al. 2019)

Abdominal Adiposity

- Waist Circumference (WC)
 - 个T2D and CVD risk (Casanueva 2010)
 - By 2030 56% of men and 80% of women will be abdominally obese (Wang 2020)
- Visceral vs Subcutaneous adipose tissue

 - 个 Insulin resistance, dyslipidemia, oxidative stress, inflammation (Wagenknecht 2003, Nicklas 2003, Pou 2007)

Whole Grain and Waist Circumference

Whole grain *P-trend <0.001*

Adjusted for : age sex smoking status total energy alcohol intake

Whole and refined grain and VAT

↑ Whole Grain Intakes Associated with ↓ Visceral Adiposity

↑ Refined Grain Intakes Associated with ↑ Visceral Adiposity

*P for trend < 0.001

- Mean Volume of VAT is adjustment for age, sex, smoking status, total energy, alcohol intake, subcutaneous adipose tissue
- Associations remained significant in statistical models after accounting for other aspects of diet

Whole grains and T2D

Whole Grain Intake & Risk of Type 2 Diabetes

Conclusions

Public Health Implications

Cardiovascular Disease

- 92 million Americans living with CVD or consequences of stroke
- \$329.7 billion annual direct
 & indirect costs

Diabetes

- 100 million Americans with diabetes or pre-diabetes, 90-95% being T2D
- \$245 billion annual direct & indirect costs

Leading Causes of Preventable Death

Conclusions

- Observational studies consistently observe that higher <u>whole grain</u> intake is associated with lower risk of chronic diseases and mortality
- A diet rich in a variety of <u>whole grains</u> may lead to better maintenance of waist circumference and improvement in several CVD risk factors
- **Whole grain** rich diets may influence body fat deposition
- □ Higher consumption of <u>whole grain</u> foods is associated with lower risk of type 2 diabetes
- □ <u>Whole grains</u> are more than just fiber

Acknowledgments

- Nutrition Epidemiology Department
 - Dr. Nicola McKeown
- Funding support

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy

How Food Processing can Increase the Consumption of Whole Grains

Eric Decker Department of Food Science University of Massachusetts

What Consumers Expect in Their Foods

- Drivers of Food Purchases:
 - Health and Wellness
 - Value
 - Ease of Cooking
 - Taste

- Whole grains attributes:
 - Health and Wellness
 - Are more expensive
 - Are more difficult to cook
 - Taste different

Whole Grains Come From Seeds

Corn

Rice

Seeds Evolved to Survive Harsh Environmental Conditions

Seed are Genetic Dispersal Agents = Designed for Minimal Digestibility = Minimal Nutritional Value

Processing is the Key to Increasing the Nutritional Value of Seeds (Whole Grains)

Dehulling and Cutting

Minimal Digestibility

Dehulling and Polishing

Brown Rice

Increasing the Digestibility of Whole Seeds Cooking

Processing to Increase Ease of Preparation Wheat

Processing to Increase Ease of Preparation Pre-Gelatinization

- Pre-cook grain and then dry
- Dried grain is more porous allowing for rapid absorption of water and quicker cooking
- Usually fortified with minerals and vitamins lost during processing

Processing to Increase Ease and Diversity of Preparation

- Milling Wheat
 - Cleaning
 - Grinding
 - Aging/Bleaching
 - Separating
 - Bran
 - Endosperm
 - Germ

"Whole Grain": Milling / Processing

- Wheat bran is difficult to mill to
 The fine particle sizes needed for flour so
 it is often milled separately
- Single stream milling can damage germ because milling is longer and harsher
- Both milling processes produce similar nutritional compositions and bioactivity

Roles of Whole Grains Components on Food Quality Endosperm

Starch (84%), fiber (3%) and protein (11%)

This is the major key to wheat functionality attributes because it's the source of gluten and starch.

- Gluten provide dough elasticity = volume
- Starch provides crumb = moistness

The additional components in whole wheat flour decrease the concentration of gluten and starch which changes functionality

Bread Production

www.bakewithjack.co.uk

Gluten

Roles of Whole Grains Components on Food quality

Fiber (43%), 4% fat and flavonoids

Flavonoids impact taste, color and the functionality of gluten

Fiber absorbs water and impacts texture

Impact of Bran on Preparation, Taste and Dough Properties

- Fibers compete with starch for water
 - More water needed to make dough
 - Dough production longer due to increased hydration time
 - Can produce different texture and staling due to different water binding properties
- Flavonoids produce astringency
 - A feeling of dryness in the mouth: e.g. tea and unsweetened chocolate
 - Mainly caused by flavonoids forming complexes with saliva proteins
 - Can be masked with sweetness
- Flavonoids and lipids also alter gluten functionality

Whole Wheat Bread Production

Flavonoids inhibit disulfide bonds formation

Gluten

Addition of Wheat Fiber to Bread: Hemdane et al., 2015

Roles of Whole Grains Components on Food quality

Lipids (10%) Fiber (13%), Minerals, Vitamin E

Lipids decrease air pocket size and interfere with gluten formation

Lipids are high in 18:3 which is easily oxidized to decrease shelf life due to off flavor formation

Impact of Unsaturation on Susceptibility to Lipid Oxidation

1

10

Newspapers soaked in linseed oil caused fire due to spontaneous combustion (Hampshire Gazette; Northampton, MA)

Impact of Mildly Oxidized Oil on Mouse Model of Inflammatory Bowel Disease

Increased Gut Inflammation

Increased tumor size and number

Improving the Functionality of Whole Wheat Bread

- Enzyme Treatments Xylanase
 - Breakdown fiber to improve dough properties by reducing water absorption
- Emulsifiers Monoglycerols, lecithin, Datem (tartaric + acylglycerols)
 - Decrease staling and increase loaf volume
- Mold inhibitors Propionic and Sorbic acids
 - All breads are susceptible to mold growth
 - Whole wheat breads can have higher moisture content making them more susceptible to mold growth
 - Sometimes refrigerated to decrease mold but this increases staling

Economic Accessibility

- Healthy Food should be accessible to all
 - Even more important with Covid
- Food Budget
 - Lower 20% of income spends \$79/week for family of four
 - Middle 20% of income spends \$144/week
 - Upper 20% of income spends \$257/week
- Cost of Whole Wheat Bread
 - Artisan = 35¢/serving
 - Name Brand = 27¢/serving
 - Store Brand = 18ϕ
 - Store brand white bread = 9ϕ /serving
- Shelf-life determined by mold growth and staling
 - Artisan bread = 3-4 days
 - Major brands = 5-7 days due to food additives
- Is the benefit of whole grains breads greater than perceived risk of food additives?

Ready to Eat Breakfast Cereals

- Can be an excellent source of whole grain
- Meet many consumer criterial for food purchases
 - Convenient
 - Good value
 - Good Taste
 - Sustainability = Long Shelf-life (low water activity) and little waste
- Are produced by:
 - Mixing whole grains (Muesli and Granola)
 - Flakes (Wheaties)
 - Extrusion (Cheerios)

Cereal Flakes

From how Cereal is made https://www.youtube.com/watch?v=a0Y5J_pgiFY

Porridge/dough Add vitamins

Roll

Flake

Dry

Spray on Heat Liable Vitamins and Flavors

Extruded Oat Cereal

How It's Made, Oat Cereal https://www.youtube.com/watch?v=vxnT2Z0k3ew

Extruded Puffed Cereals

Cereal ingredients are mixed water in passed through extruder

- Product exits die
 - Water flash evaporates to make an expanded and porous structure

Economic Accessibility

- Cost of Wheat Flakes
 - Organic = 36¢/serving
 - Name Brand = 22¢/serving
 - Store Brand = 17¢/serving
- Cost of Oat Rings
 - Organic = 36¢/serving
 - Name Brand = 22¢/serving
 - Store Brand = 17¢/serving
- With Milk = \$1.16-1.92/day for family of 4
- Shelf-life determined by rancidity
 - Organic brands often do not have added antioxidants and will have a shorter shelf-life

Added Sugar

- Many Whole Grain Products have added sugar
 - Name brand whole wheat breads = 1-4 g sugar/serving
 - Name brand ready to eat cereal = 0.2-12 g sugar/serving
- Sugar often added to counteract astringency from wheat flavonoids
- Sugar is useful in increasing palatability and acceptability of healthy foods
- For example: sweetened chocolate milk is included in school lunch programs to increase milk consumption
 - 8-12 g/serving
 - 70% of milk consumed in schools
- Is there a benefit of added sugar to whole grain foods to increase consumption
- How do we make risk assessment of how the benefits of whole grains outweigh the risks of added sugar

Conclusions

- Foods are only healthy if they are regularly consumed
- Foods will be more readily purchased and consumed if they:
 - Taste Good
 - Are easily prepared
 - Have good value
 - Nutritious
 - Sustainable

Conclusions

- Seeds are designed to not be digestible so unless they are processed they have little nutritional value
- Cooking increases digestibility by hydrating the seed and breaking down the seed coating
 - This is a long process so it often does not fit into current lifestyles
- Cooking time can be decreased by decreasing particle size and using technologies such as pre-gelatinization

Conclusions

- Processing such as milling into flour can further increase the ease of preparation of whole grains
- Whole wheat is a much more complex ingredient than white flour due to the presence of:
 - Fiber
 - Lipids
 - Flavonoids
- These components change taste and color and negatively impact bread properties and shelf life

Processing is a major key to increasing the consumption of Whole Grains

Practice Applications for RDs: Communicating WG Benefits DGSAC report identifies whole grains "with almost the same consistency as vegetables and fruits as beneficial for the outcomes examined, suggesting that these 3 plant-based food groups are fundamental constituents of a healthy dietary pattern."

- Epi research done on commonly eaten foods (mostly cereal, bread)
- RCTs further strengthen these findings
- CVD risk reduction begins at even lowest levels of whole grain intake. Every bite counts!

Dietary Guidelines Advisory Committee. 2020. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.

Practice Applications for RDs: Finding Whole Grains

- Help your clients identify healthy whole grain options across a range of processing levels. Use the nutrition label to find products with lower sodium, sugar, saturated fats, etc.
 - Ex: brown rice, quinoa, whole wheat pasta, breakfast cereal, whole wheat bread, etc.
- Help your clients identify whole grains at the store:
 - Look for the Whole Grain Stamp
 - Look for the word "whole" on the ingredient listing

The different gram amount on each Stamp tells you how many grams of whole grain are in one serving of a product.

Thank you!

Caleigh Sawicki, Ph.D., MPH

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University

Eric Decker, Ph.D., Department of Food Science

at the University of Massachusetts

