Technological Challenges in the Production of Whole Grain Products

Jon M. Faubion
Department of Grain Science
Kansas State University
Whole Grain *Challenges*

• Context
 – Can they be produced?
Whole Grain Challenges

- Context
 - Can they be produced?

OF COURSE THEY CAN BE!

- Originally all baked products were W.G.
- Companies have been & are producing high quality W.G. baked products
Whole Grain Challenges

• Reality
 – Creation/Production requires
 • ADAPTATIONS
 • MODIFICATIONS
 • TRANSFORMATIONS
 – Formulations & Processes
Whole Grain Challenges

• Process & Formulation Adaptations
 – Refined Flour Formulations
 • Optimized to a different base ingredient
 • Different intermediate product (dough)

 – Refined Flour
 • Endosperm
 – Starch & protein
Whole Grain Challenges

• Process & Formulation Adaptations
 – Whole Grain Formulations (@best)
 • Different optimization basis
 • Includes the bits removed in refined flour milling
 – Bran
 – Germ
 – @ most challenging
 • Adds non-wheat grains
 • Large pieces of the caryopsis
Whole Grain Challenges

• Effects?
 – Dilution and Addition
 – Dilutes GLUTEN Protein
 • Responsible for dough & crumb structure
 – Bran & to a lesser extent, germ
 • Interferes with its creation
 • Disrupts it
Whole Grain *Challenges*

• Effects?
 – Dilution and Addition
 – ADDS
 • Large carbohydrate polymers (Pentosans)
 – Arabinoxylans
 – Beta Glucans
 – Quite hydrophyllic
 – Compete for formula water
 – When hydrated – large effects on DOUGH properties
Whole Grain Challenges

• Effects?
 – Dilution and Addition
 • Net result:
 – A different system
 » Physical properties
 » Processing requirements
 » Final product properties
Whole Grain Challenges

• Effects & Adaptations
 – Model: Bread
 – Process: Straight Dough
 – By Process Step
Whole Grain Challenges

- Straight Dough Process
 - Scale
 - Mix
 - Ferment/punch
 - Divide/Round
 - Make-up (incl sheeting)
 - Pan
 - Proof
 - Bake
Whole Grain Challenges

• SCALING
 – Additional major ingredient(s)
 – Additional minor ingredient(s)
 – Additional or different micro ingredient blends
Whole Grain Challenges

• MIXING
 – Obligate first step
 – Creates the gluten matrix
 – Mixing *optima do exist*
 • Water content
 • Work input (time)
 • Little Red Riding Hood’s situation
Whole Grain Challenges

• MIXING: WG Challenges
 – Bran & etc are hydrophilic
 • Hydrate @ diverse rates
 • Competes with protein for water
 – Formula water must go up
 – If no adjustment
 • “ok” @ mixer
 • Underabsorbed (bucky) @ divider/rounder
 – Processing problems
Whole Grain Challenges

• ADJUSTMENTS & Consequences
 – Increased absorption (up to 20%)
 • Must be removed @ baking: time & temp. changes
 – Slack out of the mixer
 • But better later in the process
 – Reduced mixing requirements
 • f(water content, gluten)
 – Mixing optimum: narrow & cryptic
 • Easy to under or overmix
Whole Grain Challenges

• W.G. dough (w. no other adjustments)
 – WEAK
 • More viscous
 • Less elastic
 • Sticky
 – WHY?
 • Less gluten to create the matrix (structure)
 • More “stuff”
 – Interferes with gluten creation & continuity
Whole Grain Challenges

- W.G. dough (w. no other adjustments)
 - Does the bran ‘cut’ the gluten strands?
 - Probably NOT the major mechanism
 - Does cause it to fail
 - More stuff to stretch over
Whole Grain Challenges

• WEAK DOUGHS
 – Machine Poorly
 • Dividing/rounding
 • Sheeting
 – Retain Leavening Gas Poorly
 – Lack Processing Tolerance
Whole Grain Challenges

• WEAK DOUGHS
 • Morel likely
 – Lower volume
 – Poor loaf shape
 – Cripples

What to be done?
Whole Grain Challenges

• ADAPTATIONS
 – Supplement the protein
 • *Vital* wheat gluten
 • 8% to 15% or > possible
 – Issues
 • Cost
 • Mixing requirements
Whole Grain Challenges

• ADAPTATIONS, ctd
 – STRENGTHEN the Protein Matrix
 • Oxidizing Improvers
 • Used in non-W.G. applications
 • Different Chemistries
 – Increase cross-links between gluten polymers
 • Cys-Cys linkages (disulfides)
 • More elastic behavior
 – Vulcanized rubber
Whole Grain Challenges

• Oxidizing Improvers
 – Ascorbic Acid
 • Dosage limit: none
 • Usage: 0-~200 ppm
 • Rate: medium to fast
 • Rxn timing: proof thru early oven spring
Whole Grain Challenges

- Oxidizing Improvers
 - Azodicarbonamide (ADA)
 - Dosage limit: 45 ppm
 - Rate: Fast & extended
 - Rxn timing: mix thru proof

 - Potassium Bromate
 - Dosage limit: 75 ppm
 - Rate: Slow (heat triggered)
 - Rxn timing: oven (early bake)
 - Note food safety concerns!
Whole Grain Challenges

• Formula Adaptations, ctd.
 – Increase Abuse Tolerance
 – Dough Strengtheners (emulsifiers)
 • Sodium Stearoyl Lactylate (SSL)
 – Legal limit: 0.5% (FWB)
 – Gas cell stabilization
 – Proof Collapse & the ‘drop’ test
 – Additional Benefits
Whole Grain Challenges

• Low Volume Adaptations
 – FORMULA
 • Emulsifiers (SSL)
 • Add’l Yeast (1-3%)
 • Alpha Amylase*
 – PROCESS
 • Extend Proof time
 – Risk of over proofing & collapse
 • Higher dough:pan ratio
 • Both require line & equipment modifications
Whole Grain Challenges

• Dough Handling Adaptations
 – Problems
 • Weak
 – Gluten dilution
 • Sticky
 – Non-starch Polysaccharides
 – Some cereals more so than others
 – Poor Tolerance
 • Dividing/rounding
 • Sheeting
 • Make-up
Whole Grain Challenges

• Dough Handling Adaptations
 – Slow down
 • Divider, etc
 – Requires upstream & downstream compensation
Whole Grain Challenges

• Baking: WG products at the oven
 – Higher Dough Moisture
 – Hydrophilic ‘stuff’
 – Denser Doughs

• Adaptations
 – Longer bake times
 – Oven profiles to prevent burning but achieve final moisture requirements
Whole Grain Challenges

• Baking: WG products at the oven
 – Higher Dough Moisture
 – Hydrophilic ‘stuff’
 – Denser Doughs

• Adaptations
 – Longer bake times
 – Oven profiles to prevent burning but achieve final moisture requirements